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.... - E-FFEC-T-OF-S ON-IC-BOOM-ON-BUILDINGS ---

(SECOND REPORT: ELABORATION OF A METHOD FOR

CALCULATING THE DEFORMATION OF CONSTRUCTIONS)

ABSTRACT. The acoustic response of various room
configurations in buildings to sonic booms is calculated.
Configurations studied include: single rooms having
openings in walls, penetration of booms through flexible
walls, two rooms coupled acoustically by openings, rooms
with window panes.

The purpose of the present study is to evaluate the deformation of /1

constructions which are sensitive to sonic boom. The deformation is

calculated for a ballistic detonation, and the characteristics of the

various facades of a building are assumed known.

This study essentially is concerned with vibrations which are produced

in interior partitions, ceilings, window panes, which are the most fragile

elements in new structures. --The determination-of these- vibrations was: -

done using the classical theory of dynamic deformation of a plate. This

theory is applicable in the case of homogeneous partitions and ceilings if

there are no substantial internal prestresses. Also, it represents a good

approximation for the study of window panes, if these do not have dimensions

which are too large.

In order to evaluate the motions of all these elements, it is first

necessary to know the propagation of a sonic boom across a building.: The

boom can propagate through the air. It then penetrates through one or
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Convention No. 69-34-412-00-480-75-01, December 1, 1970



several openings and propagates into the interior. The case of a room

having a rectangular opening is studied in the first part.

The sonic boom-c-an-a-l-so-b-e-transmitt-ed-through-i-ight--tructural

elements (window panes, light partitions). In practice, the overall

structure does not have an effect. The transmission of these elements

depends on their motions and these two latter phenomena have been studied

together in a second part. This takes into account the possibilities of

coupling between the panel vibrations and the pressure which they radiate,

,as in the dcase of a window with-a cavity behind it, for which numerous

Istudies have been made.

1.1 EQUATION OF DYNAMIC EQUILIBRIUM /3

1.1.1 Hypotheses

For an incident standing sinusoidal-wave, the wavelength of which

is large with respect to the dimensions of the opening, the velocity field

in the plane of this opening can be studied in a simple way. In particular,

the approximation which consists of assuming that this velocity is uniform

can be made. In the same way, if this wavelength is large with respect to

the dimensions of the room, the overpressure in it can be considered as

uniform, if there are no parasitic sources in the room or at its front, such

as walls carrying out vibrations at high frequencies. These hypotheses

lead to the classical theory of Helmholtz resonators.

As far as ballistic detonation is concerned, the energy is concentrated

primarily at frequencies whose associated wavelengths satisfy the preceding

hypotheses, for conventional room dimensions. The velocity field in the

' opening can therefore be studied in the way described above, to a good

degree of approximation. When the sonic boom passes through this opening, 4

-it-begins to undergo diffractionin the room. After an intermediate time
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interval, which is short with respect to the fundamental resonance period

(calculated with the Helmholtz resonator), during which the overpressure

field is not uniform and where the first reflections on the walls are

produced, the var-ious-incid-ent-and-refEte-d waves, wh-ih--hive different

but small phase differences, contribute to the establishment of a uniform

overpres--sureithe room. This overpressure is uniform except for the

immediate vicinity of the opening where the velocity increase produces a

reduction in the vibration amplitude.+ The variation of the overpressure

in the room will be obtained by considering this overpressure to be uniform,

except for the beginning of the process.

The difference between the forces applied to the air contained in the

opening by the external pressure p-iland the internal pressure P2 is equal

to the sum of the momentum derivative of the air contained in the throat

and the viscosity forces (see Figure 1.1). In general, we can assume that

the opening is not too small compared with the wavelengths considered, so

that these latter forces, can be neglected (see [3]). 

1.1.2 Pressure Pi in the room: (rigid walls and non-absorbing walls)

It is assumed that the overpressure is uniform and the room acts like

an air volume which satisfies the usual gas laws. If the volume V changes

adiabatically, we have X

] '... § iŽ ,- ' P
0

is the ambient pressure

[where:/

-

-

e [c is the velocity of sound,

; ' V T- ep the specific mass of the air.

The derivative of the volume with respect to time dV/dt is given by

the velocity flux over the periphery of the room. For practically rigid
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Figure 1.1. Penetration of the sonic boom through an -opening-. -- --
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walls, this flux is reduced to the velocity flux at the opening, from which:

..... = VJ Jd3 _(1)

with S - surface of the opening .

u2 - velocity of a point on the internal side of the opening, oriented

from the exterior towards the interior.

1.1.3 Force Applied to the Internal Surface of the Opening

Because the acoustic equations are linear, this force will be equal

to the sum:

1°) of the pressure force Pi

2°) and the force due to radiation of the air mass which is in motion

in the opening. This radiated pressure decreases to zero rapidly when one

moves away from the opening. This radiation must result in a zero normal

velocity along the walls.

If we know the expression for the radiation (see below), we obtain the

following form for this force (oriented positively from the interior towards

the exterior of the room):

+ pd = ; dS hi ddt02 5s

1.1.4 Momentum Derivative in the Throat (thickness of the openingR)

In order to evaluate this quantity, we can hypothesize that the

acoustic perturbation will be propagated in the form of plane waves over i

the same streamline. In this case (see Figure 1.1) i

5;



'r ( T - tL7 ) I

F (t- z-h)
C 

-G(t+F-k

where:

The jmomentum derivative can be approximated b]y 

efJ[Jd}t sr= eh (t>cG"()J1

e5 du dzI dS =

el[ fj dt d 5d5 eR f dut 'sdt itt Icz dLtd~t

by eliminating the derivatives of u2 of the second order.

1.1.5 Forces Exerted on the External Surface of the Opening

If the velocity radiation force at the input of the throat is of the

form:

.

6

vx u(t)
, (t)

,I .t

dcs
/6
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I

I

0(4 dt4 dS + d.

.
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we obtain, by superposition as before, a force equal to:

. i_ .U . .· . / ..

pe is the pressure (dir-ec-tedlfrom the exterior to the interior of the room)

which would prevail on the facade assuming a closed opening (the velocity

in this case is zero at the opening level).

By replacing ul (t) by:

U4(t), vt)+ h d 

we obtain the following expression for the desired force:

j5_ as LS Cal I .s

1.1.6 Equation of Equilibrium /7

This equation is written as:

+- '( 4- (t ac e) iL hS C e· .~~ ,, dC3~

where, taking (1) into account:
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1.1.7 Simplification of the Equilibrium Equation

a) First of all, in general we have S <<!

b) The equation obtained is a differential equation of the third

order in Pi. The associated characteristic equation in terms of r is of

the form:

- 2KCr3 + 2LCr2 + 1 - O'

where K, C and L are positive.

The roots are of the form:

r 1

r
2

r
3

=

r + Ji.
0

r
o

with

'I
\-z L

The relationships among -the roots are written as:

I2k

----. ( r,¾- L4.r ~ = k
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The first relationship shows that r1 is positive: ;the second shows that

r
0

is negative. The elimination of rl among these two latter relationships

results in:

and the negative root is:

and the negative root is:

_0 - L-+3jl
35; [< k

s
t ]kz .

ie have > (for example

( + _wL 1_4- 3 A" k
r r 3 _

_L.

103 ) from which:

This is as though the roots r2 and r3 were solutions of the equation:

2LCr2 + 2KC S 2 r +1 0,

which corresponds to the first term of the differential equation

tdgi + e kC 5L d +

c) The solution of (2) is of the form:

Pi (t) is a particular solution,

A, B, C are three constants determined by three conditions.

In general w

.

I., 2



The solution rl is not a physical one and corresponds to the way the /9

coefficients i1 ,~2 are determined (see below) by limited-development. In[

!fact, a differential equation having a higher order can be obtained by

carrying out the development to a higher order.

It can be acknowledged that a particular solution of the differential

equation obtained in b) must also satisfy Equation (2).

Assuming this particular solution as the solution p io(t), we therefore

obtain of necessity:

A = 0, the overpressure must be zero after an infinite time.

In conclusion, we can substitute a second order differential Equation

(3) for the differential Equation (2), which is more physical and must be

quite close to reality:

C, +a~iph]~d +1k

This'differential equation is identical to the one for a simple

resonator made up of a mass and a spring.

The system consisting of the room and the opening therefore behaves

like a resonator, with the following eigenfrequency:

and restoring factor Q = I/So0 S is the logarithmic decrement:

I



1.2 DETERMINATION OF THE COEFFICIENTS INVOLVED IN THE RADIATION FROM THE I10

OPENING

1.2.1 The radiation is determined by the velocity distribution at the

level of the opening. This distribution depends not only on the form and

dmensions of the opening, but also on the room and even the building. The

height of the exterior facade is usually much smaller than the wavelength

under consideration, and the velocity distribution is different from the

one obtained for an opening in an infinite baffle. In the same way, the

influence of the room walls due to a reflected wave which comes toward the

opening withivelocity vectors which are different from those of the incident

wave will modify the velocity distribution. Since there is no way to deter-

mine these velocities in practice, known expressions can be used which have l

been established for the case of openings in an infinite baffle. They will

be more applicable, the farther the extremities of the facade or the walls

are away from the edges of the bpening.

These expressions are calculated for the two following cases: uniform

velocity in the opening, and uniform radiation pressure over this opening.

The real case will be somewhere in between the two hypothetical cases.

1.2.2 Hypothesis of Uniform Velocity

For a rectangular piston in an infinite baffle, usually the following

expression for the radiation is assumed:

_ e
----- Dodd 2tC i, cat c r _ _
-- 2

11i



r is the distance between a moving point of the surface S and the point

where the pressure is being calculated. u is the velocity at a moving

point of the surface.

For a sinu.soidal vb;rat;tin T. 'hnxry-*U a D Z.LUULtOll.|V|UU- . vibratio w~e nae

j =r e U JdS
a 2. _ _ _

The applied force is therefore:

It is given in [1]:

FraJ =Jwe V4 7 [Ao k /(t2)lO

jwe
-2r [U i

with:

( .A =
''.IIn - ' -

Bn, = (-1)

' /

I

~ eL 2nn9 s~,I ciJo Up21

L £t+ e3 r /(+3 )3

.i-~1%4~~~c,,~ne

_(L+.0 CL -.. . ..

k =T--c; L = length of the opening; 1 = width of the opening; 4 = L/1.

-12

/11

I

-3

I

I

I'

I

_ , : I. 

=O!J- 4j k r [ 82I



For usual rooms, we can restrict ourselves to A20 and B20 in general.

Therefore we obtain the following force due to radiation:

2( 9H dL _ e IT
./r............

with

H f( ) L o5 [( + + + (d +) Lo [ ..........

+ Y 4 () d )+(
2 LP i~[~~1.~(~,C,[ 

From

From

e. cL TI- n 

the coefficients given in § 1.1 we find:

(4)

These coefficients result in an eigenfrequency of 8.9 Hz and a damping

of 3% for a room having the dimensions 4 x 4.15 x 2.5 and an opening having

the thickness 0.30 and the dimensions 1.30 x 1.30.

Conventional rooms and openings must have eigenfrequencies between 5

and 15 Hz.

1.2.3 Uniform Pressure Hypothesis

We can write:

I

IudS = A ?rad

13

i e H
2(L+e)
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A is the admittance of the system. For wavelengths which are large with

respect to the dimensions of the opening, it is equal to the following for

the case of the sinusoidal wave [2]:

2 .

I a0 c Reck e
w is the osciilation-under-consideration, and K is the conductivity. An

expression for it is given in [2]:

e ic toat e y th 

This expression is closer to reality, the farther away the opening is

(4Carge. Therefore it will certainly be valid here and in any case where

the velocity field is planer almost everywhere. In particular, we can

assume that it is a good approximation in the case where the height of the

opening is equal to the height of the room. In practice we can write:

TCrad j e jW e where, if the wave is not

lJoudS Zilc. Ksinusoidal:

We S = o a K c e dt o caeS ) :t
We obtain the coefficients from Equation (3):

(4')

14
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These two expressions differ slightly from the expressions (4). They

result in an eigenfrequency of 9.1 Hz and a damping of 3.2% for the same

room and the same opening considered before.

1.3 RESPONSE TO A N WAVE

The N wave will be assumed as indicated in Figure 1.2.

A Pe(t)

Pemax _

Aj' '

T -T -i'

- PemaxI

Figure 1.2. Diagram of a "N" wave. __.
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1.3.1 Laplace Transform of the N Wave /14

/ + If h(t) is a Heaviside step, the value of the pressure signature is

given by:

a' pmax -L

IE -A[,(t.T"), _h .T-..

and its Laplace transform is:

- ) }ij) ' f (I -J ) ) tX 4-r 4

Maux Fpb;^ Ad l( T-,_ zT

1.3.2 Response of the Room to a N Wave Having Normal Incidence

We have seen that the room with an opening behaves like a resonator

having the following characteristics:,

m0 - eigenfrequency

SO - logarithmic- decrement.

:By setting r0 I , the Laplace transform of the internal pressure

Pit) is: 

16



;The decomposition into r o i (ive
The decomposition into rational fractions gives:

I

in the form:

tI '[ (T -r.) + I7'

! 2 -. T+ ' js
a +

cpT -r -jw,

. . .

9-r. jW-, Wj~.

After transformation to the original plane of the Lc

_wit ( l(o Ct9 r,(
) rIro(+ Wo C

,(r- oA W C,.

.f, _.

aplace transformation:

r t
e S 1CAt OeX

e.~

d B are given by:

A(+) _ _
Tun _

TC~~~as Zra

C+ +' 1 )tNwoC
+ ~ ~~, eT- Z,-t - ; Ch. Ci

+ I~(--% 
. lh +t-N) rT

-: .:,
k(KT¢, ~$r.T

/15
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T . + -----------

T -- C -,C2, 

After an initial period equal to the total duration of the sonic boom,

the pressure signature at the interior of the room is aidamped sinusoid'.

During this initial period, the signature obtained is made up of several

oscillations. According to the hypotheses which have been made, there are

no longer any rapid increases of the overpressure (see Figures 1.7, 1.8,

1.9 and 1.10).

- 1.3.3 Response of the Resonator to-a N Wave Having a Non-zero ----- /16

Incidence

The problem is to evaluate f If the facade containing the

opening is large compared with the wavelength under consideration (infinite

baffle), wegan write (see Figure 1.3) __

ae(O/t)nd:) .(Olt)

and:

(1. -s 8= 2. r dt

18
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exterior, room |

x

Figure 1.3. Effect of the angle of incidence i on the

penetration of the sonic boom.

and w

Assuming that pe(O,t) is known, Equation (5) results in

re obtain:

L sini dp (t)
Pi (t) = Pio (t) - Y C dt

a value pio(t),

Given the order of magnitude of the introduced coefficients, wewill

almost always have:

Pi (t) Pio (t):

191
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' Iopening |,
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This makes it possible to assume that we can write the following over

the opening, assuming the facade of an arbitrary building which has an

opening:

Pe ( ,t) Pe (o, t)

It is assumed that the opening is not very large (case of windows, doors).

1.4 INFLUENCE OF' THE ELASTICITY OF THE ROOM WALLS /17

The study carried out previously for the penetration of a sonic boom

through an opening in a room assumes that the walls 'of this room are rigid.

The presence of a partition or a light ceiling can lead- to substantial

coupling between the modes of this panel and the modes of the room. The

eigenfrequencies of the room and of the panel are modified and the over-

pressure is obtained by the sum of the responses to each of these modes.

We will study the variation of the eigenfrequencies and the dampings, in --

order to determine the importance of the influence of the wall elasticity.

a) Equation for the internal pressure

If one of the walls of the room vibrates under the effect of the

modified internal pressure of the room, and if the field in the room can

still be assumed to be uniform, the overpressure in the room is given by

(see Figure 1.4)

V + n] T mn 
dEJ V iod -

This is valid for a panel having the dimensions a and b and simply supported.'

qmn is the generalized displacement (see § 2.1). The summation of 1 up to
infinity does not make sense. The wavelength of the eigenfrequencies of the

panel becomes too small in order to provide a uniform field when m and n

20
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non-rigid wall .

U2

pi +

room 

- - -- II.I 11 z z ~ .1 z

/

4

P :pe ·

Figure 1.4. Influence of the elasticity of a wall of the room
on the internal overpressure.__

increase. However, the contribution of the higher frequency modes is

negligible in general, considering the duration of the sonic boom and usual

values for a and b.

In addition to Equation (6), we have the equilibrium equation for the

resonator, in the form:

~d S.= oil + 
Im

from which, by replacing IYdS by its value obtained from (6):

X - - 5 - - ---

t ;al_ - j r -( ) 4 q
4. c o". .......

i.

I

.

2i>.l

J I

ii;I

II
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' and 6 are the icircular frequency and logarithmic decrement .of the system. 8

.The walls of the room.are assumed-.to..be .rigid.

qmn is given-by---the-Duhamel-ihteg fal -(zero--initiaT con-ditions):

~e Se IM is IAd (6 - ) b -

for a simply supported plate. The circular frequency of the mode (m,-:n) equals

equals w . The damping is - , the thickness h, the volume mass is p.
mn p

!It is subjected to the total pressure Pt(t).

We assume that the plate is only subjected to the pressure Pi, which

will give an order of magnitude of its influence.

If Pt = Pi' the differential equation for Pi is written as:

S/¢T1dS-; t - It.A 4~~~~~~~~~~~~~'
~~C d S = J~ &CL~t

+ 4 A -
SirS Pr h m_+ n odd|

do a 3I

Ii., d: nd RW!:Ji dJ3()g~ul,, -7Byz)dz
d 2 a,,"
M Y1IMh~

For a sinusoidal pulsation wave w, the second term can be written as :

\p L~I 
i, 1 LJ 4 .ir.Z11 

6IiG 4ar+n jL _- [L4jw 3

?f k-FLIS m _+ n odddJlyI [(j(4+

b) Determination of the Eigenfreguencies

Taking the real part of expression (7), and setting it equal to zero,

we obtain an equation in w which is the equation for the eigenoscillations.

*Translator's Note: w, 6 omitted from foreign text.

22
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Retaining only terms for m = n = 1, the system has only 2° of freedom,

and the two eigenoscillations are the solution of the equation for wr:

pt - i-/r+4a, -· w e + 2! lrw41 _ 0 
[ 0o; hf "' 2i

In general, the terms containing p can be ignored if the solution

obtained is not very close to 11' For this hypothesis, we obtain:

J~e 4 PfOr h ______ Wr W

Since a is only slightly different from:

by setting ' ._

(see § 2.2), we obtain:

......... ... I f O-)

or Wtf ( - =

n is very small for a panel or a light ceiling (order of 1%). Therefore

we find the two solutions:

This result shows that if 1w0 - Wll is large with respect to BpW11

* ( E is of--order-1.01), which is the case as soon as w0 is only slightly
p

different from w1 1' the eigenoscillation w0 is essentially one of the

23



eigenoscillations of the system.

It should be noted that the result wrl = 11 is not valid, because it

violates the hypothesis from which the analysis was started. From the point,

of view of the acoustic pressure, this is not important, because the pressure

radiated by the wall must be negligible, and this problem will be treated

in § 2.3.

Finally, if w is only slightly different from w1 1' then w cannot be

very different from w1 1 ' because the previous calculation would result in

a contradiction, and wr is therefore a solution of

w- r)

or, essentially: /20

° I

Thus we also obtain a solution Jr ( J, and the overpressure will
respond only to the pulsation mode w0.

c) Determination of the Damping for the Pulsation Mode u

We can determine whether the damping V'0 for the mode m0 is changed

by the presence of a light panel. It is equal to the half of the imaginary

part of expression (7), in which we set w w= 0. We obtain:

- So .1-ab 2 f(uwon-wo/)+2WW,,'p n- W
2T C m + n odd m ) 4

For w W0, the terms containing p can be ignored. It follows
mn that:

that:

24



2T rT (< -we) 4 F-r (u,3- j o j o

which is almost equal to 60/2T for conventional values of (order of 10-2).

If the pulsation wmn is extremely close to 0, the imaginary part is

essentially given by:

and the damping can be considerably increased. This is particularly true,

Ithe less damped the wall is and the lower the circular frequency w (m and

n small).

d) Conclusion /21

The system consisting of the room with an opening and a simply supported.

and non-rigid wall 'must in general be considered to consist of the two

subsystems coupled in a very loose way. The fact that the pressure is

independent of the passage of the sonic boom through the opening and is

independent of the wall vibration, results1 in a small pressure radiated by

this wall compared with the internal exciting pressure. This makes it

possible to assume that:

1) the results will be identical for a wall having boundary conditions

w-hich are different from simple supports;

this wall is also excited along the outer wall of the room by

the sonic boom. We may also assume that there may be a very loose coupling.

The case where an even lighter panel (window) is installed in the walls

will be treated in section 2.3.
. . . .. . _ ....................................................................................................................... .. q 
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1.5 VERIFICATIONS OF THE REDUCED MODEL

a) Experimental Configuration

The linear acoustic equations (viscosity does not have an effect) show

that it is possible to study the penetration of a sonic boom.in a room

having an opening, by using a model at the scale 1/n subjected to a ballistic

detonation. The signature interval is divided by 1/n. The frequencies

obtained will be n times the real frequencies [6].

The results obtained with models at higher frequencies should be

transferrable to buildings having low frequencies.

Simulation of the Sonic Boom

The N wave was simulated by the explosion of goldbeaters skin balloons

which ere inflated by compressed air- --If these balloons are new, the

explosion will be quite uniform. The recording of the perturbation shows

a wave whose form is quite close to that of a N.

The diameter of the various balloons vary between 85 cm and 140 cm at /22

the moment of explosion. The signature interval obtained was.within the

range of 1.5 to 3.5 ms. The overpressure of the crest 3 meters from the

balloon varied considerably (between 1 and 100 Pa in the free field).

This simulated N wave is in fact not perfect, because the rise times

are relatively long (sometimes one quarter of the total duration). On the

other hand, these rises are often not linear.

Model of the Room

V.

A room-having the internal dimensions 8 cm x 16 cm x 16 cm was built

out of thick aluminum plates which were welded together. The facade consisted;

26



of a plate 5 mm in thickness. It had a variable and rectangular opening.

This facade was placed in a baffle, above which the exploding balloons

were mounted at a height of about 3 meters. Holes were provided for placing

one quarter inch-microphones-(see Figure-1r.5)-and were located in the center

of the three nonsymmetrical sides of Ithe room.

Each side had an additional sole 2 cm from the level of the facade.

A microphone was installed in the baffle in order to record the

signature at the outside. It was placed sufficiently close to the model

so that it gave the same overpressure as at the level of the opening. The

opening was closed and sufficiently far so that the radiation from this

opening was negligible.

Measurement Configuration /23

The signals recorded by the microphones were directed to an oscillo-; ..

scope after amplification. It was a memory type oscilloscope or had a

photographic apparatus. Thus, signatures of the perturbations are easily

obtained. The microphones used were the Briiel and Kjaer type 4135.

b) Measurement Results

Uniformity of the Field in the Interior of the Room

The overpressure obtained at the interior of the room varies according

to the different modes. The oscillations for the higher modes always have

a very small amplitude compared with those of the first mode.

We found that, according to the first mode, the overpressure varies

in phase with the placing of the microphones, beginning after a very short

time'interval 'The amplitude is almost uniform, according to the first

mode, and decreases slightly when the opening is approached. The largest
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room dimension was equal to about 1/4 of the smallest wavelength observed in ;

the experiments carried out.

In the center- of-the-walls-,- for-an-incidence of 00- O`(incidence is the

angle between the normal to the facade and the propagation direction), we

found that the overpressure was the Same at the center of the walls (except

at the beginning) for all the modes. This result was not true for

an incidence of 60° . The curves recorded by the photographic apparatus

are shown in Figure 1.6.

Fundamental Eigenfrequency and damping

1) Measurements

The rectangular opening had a constant length of 8 cm and the

width had a value of 2.4 and 8 cm. This opening was placed in two

positions:

- Position 1: the height of the faSade (8 cm) is completely pierced.

- Position 2: for widths equal to 2 and 4 cm, the opening is

arranged in such a way that the length is parallel to the longest edge of

the facade.

The measured values of the resonance frequencies and the logarithmic /24

damping are given in the table below. As a comparison, we also show the

values calculated according to the two hypotheses of uniform pressure and

velocity (see § 1.2).

The experimental determination of the resonance frequencies is quite

accurate and can be estimated to be less than 5%. This is not true for the

logarithmic decrement, and its uncertainty is assumed to be 15%. In

practice, given the accuracy of the experiment, the logarithm of-the ratio -I

of two successive peaks is constant. We can assume that a more accurate

measurement would show that the damping is not of a completely viscous nature.-,
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We can estimate the experimental uncertainties in f and 6 at 5% and|

15%;, respectively. The frequency calculation seems to be correct, but

the damping obtained by this calculation is in general twice the true damping.

The latter result (p = 4, positions 1 and 2) shows that it is important

whether or not the walls are very close (this is not an.isolated result, but

was obtained several times). In any case, it is not the distance between

the edges of the opening and the walls, expressed as a fraction of the wave-

length of the resonant frequency, which is important, but undoubtedly the

quotients of the length to the width of the opening and of the facade which

matter. This conclusion is in agreement with the principles set forth in

a study by Nesterov [7] concerned with a circular opening located in the

center of a circular stream tube.

The experiments seem to show that when the walls approach each other:

f real diminishes
f theoretical

and 6. real also diminishes.

6 theoretical

In the case of an opening which occupies a large area in the facade,

we could assume zero internal resistance to radiation, which would correspond

with a model already given (see J. van Bladel, [1]).

The tests described above will be completed by tests on the model,

which represents a building to be constructed at Istres. These tests will

result in additional information.

Oscillations of the Acoustic Pressure

For an incident wave which has a shape very close to the letter N, the

theoretical and experimental results agree very well when the true measured
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yvalue of the damping is assumed in the calculations.

When the incident wave has numerous high frequency harmonics, the

results will still--agree; -but-the analogy with a N-wave is a delicate one.

The results of the calculations can change considerably for small variations

in the models of the N wave.

It was not possible to measure the difference between the incidences

i = 0° and i = 60°.

The response frequency of the resonator does not seem to depend on the

amplitude of the incident wave, at least for the conditions in these

experiments.

It was possible to observe a "dynamic amplification factor" of 2.5 to

3 for an incident wave which resembled a sinusoid more than a N wave, and

-which could not be treated by means-of a simple mathematical model. It

seemed that the resonance conditions were satisfied.

Theoretical and experimental curves are shown in Figures 1.7, 1.8, 1.9

and 1.10.

1.6 CONCLUSIONS \

The study shows that the system consisting of a room and an opening

can be considered as a Helmholtz resonator for the study of the penetration

of a sonic boom.

Consequently, we can expect to obtain the pressure signature in the

interior of a room which has the shape of a damped sinusoid. Its maximum willj'

be equal to twice the overpressure of the incident sonic boom crest. This

overpressure is measured on the faSade and is more than two times the over- '

pressure of the crest measured on the ground. This is true when the '
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signature-interval of the sonic boom is approximately equal to theperiod

corresponding to the eigenfrequency of the system consisting of the room

and the opening.

The hypotheses made do not make it possible to predict the rise time

(or the greatest slope) of the internal overpressure.

In order to obtain resonance with a classic supersonic aircraft

(fighter), an eigenfrequency of about 10 Hz is required, which is usually

founds(see § 1.2). With a supersonic transport aircraft of the Concorde type,-

an eigenfrequency of 3 Hz is required, which is only obtained for a very

small opening with respect to the room. On the other hand, a double resonator

(two rooms connected by an open door, and the sonic boom penetrates into

one of them through an opening) can have an eigenfrequency of this order.

In addition, the overpressures obtained can be considerably higher. The

study of the double resonator can be carried out in connection with the

preceding study. ..

i.
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-- ~~. 2. VIBRATIONS OF WALLS IN A ROOM SUBJECT TO OVERPRESSURE -.

2.1 SUMMARY OF THE CLASSICAL THEORY OF VIBRATION OF A HOMOGENEOUS WALL /30

The following calculation treats the vibrations of a homogeneous

rectangular plate, having length a, width b and thickness h. It is assumed

that the membrane stresses can be ignored (which is assumed for a deflection,

smaller than the thickness). Also it is assumed that there are no internal

prestresses. These simplifications make it possible to obtain the linear

relationships given below.

a) General Equation

The general differential equation can be written as

atL 4 ze(- ' 3rC aiayl C / er Xh (1)

with: w I (x, y, t) = dynamic deflection

E = modulus of elasticity

v = Poisson coefficient

p = volume mass

p (x, y, t) = pressure applied to the wall.

In addition to this equation, boundary conditions at the edge of the

plate must be specified.

If p (x, y, t) does not depend on w, which assumes negligible radiation,

we can find eigenmodes in the form:

which satisfy:

41 !



______andthe bry c. at t of tewa.

and the boundary conditions at the edge of the wall.

Tf .we make a deeomnscitio- n acorr dino to the variousn eopenmode. inIL. We Gcl·ea.N UCl kL;SIVIIU:L X LLX CZLUCVLUI 1 LU L1e VZ LLUU5 LV LLe-I LLIVUCXb LL

such a way that:

= c r(

we obtain for each mode:

I I z 4
9r+ UJr9.- h1

h

We can add a damping term p and we obtain:

p h
qP(t) is given+ p by:r ()

pr (t) is given by: -

(2)

SIr(t)

and qr(t) can be determined by a Duhamel integral:

_ r . . .. . . . . .q _ 
qr~~~~~~~~~~~~~~~~~~~~~~~~~~!
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In order to obtain the stresses we have the relationship:

2 Cl

b) Case of a Simply Supported Wall

The boundary conditions for a real wall are not well defined in

general. In order to simplify the calculations, frequently the case of

simple supports is considered( 2) .

In this case:

_ b

(a and b are the dimensions of the wall)

satisfy the imposed conditions. We obtain:

hm 2 ) D

with 2 E I _ 

:qn (t) =ab Ijp("j) d {i

(2)The case of clamping is formally identical. The frequencies and eigen-
modes are given.by M. J. Crocker, for example "Multimode -Response-of-Panels
to Normal and Traveling Sonic Booms", J.A.S.A., Vol. 42, No. 5, November, 1967.;
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and if p only depends on t:

|r5 (t) =( ) for m + n i,

We obtain the following for the stresses:

hTCL IL ) m + noX( I dit) (Y)9

2 (-1) m + n odd|l a

(stresses are a maximum in the center).

oddi

evens

(t)

For the acceleration we can assume:

W = _ Z , · q*(t) At (xYy)
m+ n o= 

c) Application to the Case Where the Pressure acting on the Wall

is a Wave Shaped like a N

Numerous studies have been made on the subject. The displacements,

stresses, accelerations are the sums of damped sinusoids (see Figure 2.1),

which is confirmed by experiment.

It is expedient to introduce the notion of the dynamic amplification

factor (D.A.F.) defined in general as the ratio of the maximum dynamic

displacement.due to the sonic boom and the displacement which would be

obtained by a static load equal to the overpressure of the crest and

.uniformly distributed.

44
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, Figure 2.1
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Numerous curves of D.A.F. have been drawn, (see Figure 2.2) for a

reduced structural element and the first mode alone, as well as by taking

into account all the modes.

The maximum dynamic amplification is on the order of 2.

2.2 CASE WHERE THE WALL IS LIMITED BY A CLOSED ROOM (ALONG ONE OF THE SIDES)

The second term of the general differential equation (1)

can be considered as being made up of two overpressures:

1) the incident overpressure p e (x, y, t)

2) the overpressure radiated by the vibrations of the wall Pr (x, y, t):,

to the exterior as well as to the interior of the room (see Figure 2.4).

In a free field,, this 0verpressure Pr (x, y, t) is negligibl/e compared

with the overpressure Pe (x, y, t). On the other hand, if there is a room

adjacent to the plate, the quantity Pr (x, y, t) will increase because

of the reflections on the walls of this room of the radiated wave. Conse-

quently, it is appropriate to evaluate the influence of a room adjacent to

the panel, because this situation always exists in practice.

We will expect -the following: 

__1 there will be possibly a detectable modification of the vibration 5

amplitudes of the plate

2) Pr '(x, Y, t) depends on the displacement w (x, y, t), for any

change in the eigenmodes and the eigenfrequencies of the plate.

46



I00-H a4

I-'.
0) C

a
C

a
4)

4-J

C
a

.7-4 0-4
.

0)

4!J C
a

f.. 4!0t0d
4d

,: 
.. 

.. .

'"elIIco

w!4
..'

.r 
·· 

:, 
.

'J

Uco00

'H
.

c

I7- 
' 

' 
'

r4

C)j

.7-4

*-.E--''---

47!

C
 :
 ?i: 

--

iI

, .'..

.~-..

L
-~ 

-

· 
.

-
.

.~
~

~

, 
,, ~~~~~.' 

, 
o 

,

?
-~

~
~

~
~

~
~

~
 

..... 

..
,, 

-
, 

'" 
4 

..
,.L

.· 
,.. 

-
.

..
' 

::. 
:,~. ..

I::
-

.
.

.
f 

.

.1 
.

; 
.

qr
-::.:



J~~ ~~, I "I ,

,I 
'

ii c room

i·

Figure 2.3. Case where the wall is bounded by a closed room.
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'Figure 2;. Radiation of the panel.

We will first deal with the case of a closed room, having rigid and non-

absorbing walls adjacent to the plate, and we will discuss studies which

have already been carried out.

a) Radiation of the Panel ,

- .-. The simplest hypothesis is to assume that the overpressure in the room -

is uniform. Craggs [1] considered one reasonable limit of this hypothesis,
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which is that the first in situ frequency of the panel under consideration

is smaller than one half of the fundamental frequency fo of the room,

which is considered as a tube open at one end (the one containing the panel)

and closed at the other -end---Th-is-in-eff eft assumes that-the panel covers

all of one wall of the room. Assuming that the occupied area is less than

one half of the surface of the wall of the room, the transverse modes of

the room must contribute to the uniformity of the pressure field. Assumming,

that the first frequency of the panel is less than the frequency fO, a

finer analysis can be carried out assuming an expression of the following

form for the radiated pressure:

A it)LO~S c, for an incident sinusoidal wave with pulsation w. The

abscissa Z = 0 corresponds to the wall opposite the panel [1].

This hypothesis corresponds to a pianewave in the room. It assumes in /35

particular that the panel occupies a large part of one of the walls of the

-room. For this configuration, Craggs [1] was able to theoretically confirm

this hypothesis using the method of finite elements. He also found that,

if primarily the first frequency of the panel is heard on the floor of the

room, the higher frequencies will become more and more perceptible as one

approaches the panel carrying out vibrations.

Besides the panel dimensions compared with the dimensions of the wall

containing the panel, a second restriction to/the planar wavemodel is, 

that the depth d of the cavity cannot be too small compared with the largest

dimension L of the panel. For d < L/2, the transverse modes will become

more important [3].

Assuming uniformity, the interior overpressure has the following value,

using the notation of §§ 1.1 and 2.1

(t) = C wdS 5 (see Figure 2.5)<v C
" _~ ..... ...................
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and for a simply supported panel this
~ii' i- .......... Pe.! ' . ~ ~ Pe . results in:

I /1EI "I 1>

~/ ' '" " '. ~-.. / '~T.t V m + n- odd| mn

The summation over all odd and

whole m and n does not make sense,

' ~/ '/ / :/' / / / /' / / because for very high frequencies, the

pressure can no longer be uniform.

However, the duration of a ballistic
Figure 2.5. Diagram for the
calculation of the interior detonation is such that it will primarilycalculation of the interior
overpressure. excite the (1, 1) mode, and the contri-

bution of the other modes (m, n) to

the radiated pressure become negligible when m and n are increased.

- b) Vibration of a Simply Supported Panel Adjacent to the Room

If we make a decomposition according to the base vectors

the generalized displacement is given by Equation (3):

Pt is the total overpressure. We will ignore the pressure radiated by the

plate into a free field, so that:

'Pt- Pe Pi
1
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It should be noted that this radiated pressure in the free field can

be included in 6 , which is measured and which contains not only the

purely mechanical damping due to the structure of the plate and its support

conditions.

Under these conditions, assuming uniform pressure:

______ rl~,i-)dh6 ' () C _r WMh (t. ) ( 
T~~~~~~e PSM Han 4 

fh '
f P-V r + s dd rs ' (

In carrying out a Laplace transformation of the two terms, we obtain:

(zero initial conditions)

1p h ru [IpP + r'M6) M11I

IOY jjX64 a__ _ _ __ _r (4)

r_+ s od r~s {,.i. j~ )~+~'A ,Pr h sF V Wn - I+ wpt I
ir + s odd I rs ~4 M 

In order to have an order of magnitude, we can limit ourselves to

m = n = r = s = 1, and we obtain:

G42 c aJ Ac'
? ,+ _

*
. .r .'v ... ....

This expression shows that the room behaves like an additional spring,

and that the in situ frequency of the plate is increased. The ratio:

. . . ....... . ... . . . .... .__ _ _ _ _
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e Vor - h3 v E (a ·c |

determines the importance of the room influence.

The first eigenfrequency of the plate is then given by:

fll is the eigenfrequency in the free field.

The importance of ni makes it possible to predict the largest or the

smallest influence of the closed room.

- For a conventional wall (made of plaster) making up one side of a

room having the usual dimensions (4 x 4 x 2.5 m), il is negligible and there

is hardly any coupling.

- For an average window (1.30 x 1.30), consisting of two cross pieces

having the usual thicknesses (1.95 mm), in the same room as before, niis

also negligible and there should be no coupling. It should be remarked

that the first frequency of the window approaches the fundamental frequency

fo of the room, and the hypothesis of uniform pressure will be subject to

a certain error.

- For a large bay having glass panes with the dimensions 4 x 2.5 (thick-

ness i6 mm) on a room having a depth of 4 metersf lis no longer negligible

(i{= 4).

The preceding calculation must be improved if ,l becomes too large. One

method consists of summing m and r from 1 to 2R + 1 in the Equations (4), y
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and summing n and s from 1 to 2S + 1. Then the obtained system of equations

is solved. Pretlove and Craggs showed that a good approximation is found

[5] if we restrict ourselves to the two first odd modes for a rectangular

plate (but not for a square one). In particular, the shape of these modes

is obtained with sufficient accuracy.

This calculation assumes that the hypothesis of uniform pressure is /38

satisfied, which cannot always be realized. The calculations _of the

radiated pressure, carried out up to the present, assume that the first

frequency of the panels does not exceed the fundamental frequency fo of

the room (which is usually the case). In the opposite case, the latter

acts like a supplementary air mass [3] and [1].

Using the hypothesis of a plane wave in the interior of the room and

for an incident sinusoidal wave with circular frequency w, we then find the

ratiol m equal to [1] 1

which shows that the volume of the room behaves like a component with

negative rigidity (which amounts to an additional mass).

Even though the plane wave hypothesis is not very realistic, a detailed-

study of the response of the system consisting of the panel and the cavity

can be made using. the method of finite elements [1]. The:results obtained

for the eigenfrequencies are shown in Figure 2.6.

The modification of the eigenmodes and the eigenfrequencies makes itj

possible to predict the response of the system. The amplitude of displace-

ment of the plate is reduced, approximately by the ratio 1 + nlif q is not

too large. The amplitude of the stresses vary essentially-like -that of-the-

displacements, except when nlis too large [1]. The overpressure in the

interior of the room increases with n' on the other hand.
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Figure'-2.6. -Variation of the eigenfrequencies of a simply supported

plate with rn and the ratio of length to width p (according to [1]).
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The previous calculations were carried out in the case of a simply

supported plate. The case of a clamped plate can be treated in the same

way. The coupling is smaller. The results of eigenfrequencies are shown

in Figure 2.7 according-to-[r-]. --

2.3 CASE WHERE THE WALL IS LIMITED BY AN OPEN ROOM

The panel can occupy a part of or the entire wall of a room having an

opening (see Figure 2.8) and the response of this panel can depend greatly

on this situation.

The closeness of the room brings about a coupling between the radiated

pressure and the vibrations of the panel, just as in § 2.2.

This problem was treated in § 1.4 for a simply supported plate.

- If the coupling becomes important, one cannot take the dampings into

account, so that the equation for the eigenpulsations is written as (see

§ 1.4):

to m + noddl

where, since

64 ah a it

i~ jh ecuIC v0( # - r- 

m n ( W , w-) -

_ I
_ _ _ _ _ 

- t e-
°4 ° mLU l od

W 0o O m m+ n od

1.
VmIn ( - )

n was defined in § 2.2.

a) Solving for Eigenfrequencies /

If we only retain the first mode of the panel, the equation is written

as:
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IL 2

If we also take the second mode of the panel w1 3 into account, the

equation is written as:

W W
- . __ _ .g( 09 . )

In order to see the importance of the coupling, we can consider the case

W11 = 03' which gives: 

- retaining only the first mode of the panel, and by setting X Z
Wa 

X -X(e+) =' X l-"

- retaining the two first modes of-the panel, and by setting = /40

. b4>4

;_ XX -2+ta2) X ( -4 )( 4 o

Figure 2.9 shows these curves for various values X. They show that

they practically all overlap in the vicinity of X = 1. The branches of

the curves X < 1 also all practically overlap.

The transition from X to 4 is made using relationship _ + )

The comparison of Figures 2.7 and 2.10 show` that the coupling becomes greater

in the case of the open room considered, as compared with the case where the

room is closed. This result was confirmed in [1].

The modes (1.3) are not affected in this way by the coupling for the

calculation conditions, except for very large elongations % of the plate

(small A).
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b) Overpressure of the System Subjected to a Sonic Boom having

the Signature Pe(t

Several cases can be consid'ered.l 

1i) The sonic boom impinges only on the opening. This is a case of a

sonic boom which penetrates through a open window into a room, one wall of

which consists of a light panel, and which is only subjected to the internal

pressure in this room. Using Laplace transforms, pi is given by the following

expression, where the damping has not been taken into account:

In the case mentioned, in general we have: w 0 1 1 < 13 . Since n
is small in general, we can restrict ourselves to considering only the two

modes 1ll and w
o
.

If we call Q0 and 11ll the two first modes of the ensemble "wall-room",

we obtain:

/ . A\/ L n '\ 2

/41
v . 2 _

41 0

The oscillations at the frequency Q0 are carried out with an amplitude

proportional to

_2J o Wi

'. ' In -. -DQ~ o

Zo i'' 1 1 .-~u : --
- W. -

-10 ( J1 A
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and the ones at the frequency w0 are carried out at an amplitude proportional

to 1. The oscillations at the frequency 11 are proportional to

Wo - l - 6i_

Since we have 1ll > 1 1' we can assume that the maximum internal over-

pressure that can be obtained with a sonic boom must diminish with l, if

Qll is sufficiently different from Qo. This case &. 1 Ocorresponds

to a much stronger damping (see § 1.4). The maximum internal overpressure

must always diminish with n. (For n # 0, this maximum internal overpressure

is equal to about twice the overpressure of the crest of the incident

sonic boom, according to the first part of this report.)

M-) The sonic boom impinges only on the panel

This is the case of a sonic boom which propagates through a closed __

window into a room having an open door and which communicates with a very

large room not subjected to the sonic boom. The equation for Pi is then

written as follows, ignoring the damping terms and using the Laplace

transforms

[PiLIt+( +4, (ILW I, +27.u

iŽC L tI ( - - * )e
:¢~~~ +" 9 (?. ..

for a uniform pressure Pe(t) over the' panel.

f wenye5ai5

If we only retain the modes w and -i -.we obt~in:

+ ~1 Z
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or

Depending on the values of Qll' %0 and the signature interval, we can /42

obtain different combinations of sinusoids, which must agree with the results

of [1].

The expression for Pi above shows that the overpressure in the interior

will consist of oscillations at the coupling frequency of the resonator and

of oscillations of the coupling frequency of the panel. The amplitude of

these two types of oscillations will have the same order of magnitude.

In addition, 7 0l ] can become very large, if Qll is not too

far separated from QO (which assumes that n is not too large). Under these

conditions, a considerable internal overpressure Pi can be expected, because

the overpressure radiated by the window is essentially in resonance with

the Heiholtz resonator.

A more complete study of the internal overpressure should be carried

out, taking the dampings into account.

The sonic boom impinges on the panel and the opening 1

This is the case of a sonic boom which penetrates into a closed room

through an open window and a closed window. These two openings are

sufficiently far away from each other so that there will be no interaction.

The solution for P. is obtained by adding the two previous solutions:

1 '- -w i - -
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If the coupling n is large enough, and if the two modes Q0 and Qli/

are highly excited, the addition of these two pressures obtained in the two

first cases will result in an amplification of the internal overpressure

which is larger--than-is--obtained- wifthoutcoup-i -raggs '[1] theoretically

obtained an amplification of approximately 2.7 (without damping) in a

particular case which was not selected in advance.

c) Response of the Panel

We will only retain the pulsations 1ll and w0, for the same case as

for the calculation of the overpressure.

1i The sonic boom impinges only on the opening

From § 1.4, we find:

which results in:

I 71 f, kvi~col~t

If there were no coupling, the internal pressure would be given by

If there were no coupling, the internal pressure would be given by

and the displacement would be:

63 !
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Everything behaves as though the panel were responding to an internal

pressure equal to _a T i 2 ',I the maximum of which is greater than the

value of P. calculated without coupling.

It is difficult to predict a priori if the coupling increases or does

not increase the response of the panel. In any case, with a very loose

coupling, we can easily predict a dynamic amplification factor in this case

equal to five times the dynamic amplification factor which would be obtained

considering the panel subjected to a sonic boom (the dynamic amplification

factor of thepanel subjected to a damped sinusoid is two to three, and the

maximum internal overpressure equals one to two times the overpressure of

the crest of the sonic boom).

X2) The sonic boom impinges only on the panel /44

According to § 1.4 the equations are written as:

Ttefh

---- 2.--8 +

from which:

, = 16 (6Pw4 1 ) p1 1

PC - .2
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The coupling is important for a light panel, which must have a low

frequency, and we can assume that 1li < o0' which leads to the first case

of b), by inverting the roles of Qt and _
-

1tr-c =Q0 --J _,A 1 i
r12ep h ('-14-) I t2t+ wt n I Q., J

In the same way, the displacement of the panel consists of oscillations

at the frequencies and a , (the oscillations at the frequency j Q

vanish for a negligible amount of coupling).

The oscillations at the frequency st oppose the oscillations at

the frequency QL1 in general, and the displacements obtained must be smaller

than when there is coupling.

3) The sonic boom impinges on the opening and the panel

The displacement is obtained by adding the two preceding displacements:

The panel (assumed to have the eigenpulsation 11), wuldT have a responsel

equal to the following, if it were not subjected to the sonic boom:

The difference Qll - QllO equals:
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This expression shows that the displacement due to the internal pressure

is increased. This displacement can equal five times the static displacement

which would result from a uniform pressure in the room, equal to the maximum

value of pe

The displacement of the panel must therefore become quite large and

considerably exceed the displacement which is predicted by considering the

hypothesis of a plate subjected to a ballistic detonation.

This amplification will be attenuated as the coupling increases. The

results obtained are not contrary to those obtained by Craggs [1].

2 .4 CONCLUSIONS

a) Results

The classical theory of vibrations of a homogeneous plate has been

reviewed. It makes it possible to predict the maximum responses of a plate

subjected to a sonic boom for the simple casei, using the curves of the

dynamic amplification factor.

This theory led to a simplified approach to the influence of rooms

adjacent to the wall, taking into account the existing couplings. Using the

hypotheses made, it seemed that a ballistic detonation penetrating into a

room through an opening (window or open door) and through a light panel can

bring about large overpressures and displacements. A large bay containing

glass panels (showcase) installed in an opening will result in an internal

overpressure-the maximum amplitude of which can be equal to 2't6 3times ..

the overpressure of the incident crests. This effect is even greater than
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in the case of a partition. This maximum amplitude will be only slightly /46

damped, which will create a psychological stress. On the other hand, the

displacements of this bay to the outside can considerably exceed the ones

which are predicted-if we consider thebay -only subjected to the sonic

boom (more than 5 times using the hypotheses made).

b) Criticism

1) When the displacements of a panel become large (larger than the

thickness), it is necessary to take the membrane stresses into account in

the vibration equation of the plate. These stresses can considerably

reduce the displacements (see [6]).

The study of the vibration of glass plates in the vicinity of the

rupture point cannot be made using the addpted hypotheses.

2) Numerous panels currently in-use in construction are not homo-

geneous. The fact that several materials are used can lead to additional

stresses.

X3) The aging of the buildings produced additional settling and

additional stresses, which are translated into internal prestresses.

These should be taken into account in a study of the vibrations and

stresses in a plate.

- -- - - ;-:
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